Epigenetic Changes in Mitochondrial Superoxide Dismutase in the Retina and the Development of Diabetic Retinopathy
نویسندگان
چکیده
OBJECTIVE To investigate the role of epigenetic regulation of the manganese superoxide dismutase gene (sod2) in the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression after hyperglycemia is terminated. RESEARCH DESIGN AND METHODS Streptozotocin-induced diabetic rats were maintained in poor glycemic control (PC, GHb ∼12%) or in good glycemic control (GC, GHb ~7.0%) for 4 months, or were allowed to maintain PC for 2 months, followed by GC for 2 additional months (PC-Rev). For experimental galactosemia, a group of normal rats were fed a 30% galactose diet for 4 months or for 2 months, followed by a normal diet for 2 additional months. Trimethyl histone H4 lysine 20 (H4K20me3), acetyl histone H3 lysine 9 (H3K9), and nuclear transcriptional factor NF-κB p65 and p50 at the retinal sod2 promoter and enhancer were examined by chromatin immunoprecipitation. RESULTS Hyperglycemia (diabetes or galactosemia) increased H4K20me3, acetyl H3K9, and NF-κB p65 at the promoter and enhancer of retinal sod2, upregulated protein and gene expression of SUV420h2, and increased the interactions of acetyl H3K9 and NF-κB p65 to H4K20me3. Reversal of hyperglycemia failed to prevent increases in H4K20me3, acetyl H3K9, and NF-κB p65 at sod2, and sod2 and SUV420h2 continued to be abnormal. Silencing SUV420h2 by its small interfering RNA in retinal endothelial cells prevented a glucose-induced increase in H4K20me3 at the sod2 enhancer and a decrease in sod2 transcripts. CONCLUSIONS Increased H4K20me3 at sod2 contributes to its downregulation and is important in the development of diabetic retinopathy and in the metabolic memory phenomenon. Targeting epigenetic changes may serve as potential therapeutic targets to retard the development and progression of diabetic retinopathy.
منابع مشابه
Epigenetic Modifications and Diabetic Retinopathy
Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s) responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modificati...
متن کاملRole of Glyceraldehyde 3-Phosphate Dehydrogenase in the Development and Progression of Diabetic Retinopathy
OBJECTIVE Mitochondrial superoxide levels are elevated in the retina in diabetes, and manganese superoxide dismutase overexpression prevents the development of retinopathy. Superoxide inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which activates major pathways implicated in diabetic complications, including advanced glycation end products (AGEs), protein kinase C, and hexosamine pa...
متن کاملNaringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro
Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...
متن کاملOxidative stress and diabetic complications.
Oxidative stress plays a pivotal role in the development of diabetes complications, both microvascular and cardiovascular. The metabolic abnormalities of diabetes cause mitochondrial superoxide overproduction in endothelial cells of both large and small vessels, as well as in the myocardium. This increased superoxide production causes the activation of 5 major pathways involved in the pathogene...
متن کاملRole of mitochondrial superoxide dismutase in the development of diabetic retinopathy.
PURPOSE Apoptosis of retinal capillary cells is an early event in the pathogenesis of retinopathy in diabetes, and oxidative stress has been linked to accelerated apoptosis of retinal capillary cells. Mitochondria are the major endogenous source of superoxide, and superoxide is considered to be a causal link between elevated glucose and the major biochemical pathways postulated to be involved i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 60 شماره
صفحات -
تاریخ انتشار 2011